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Numerical Approximation of Mindlin-Reissner Plates 

By F. Brezzi and M. Fortin 

Dedicated to Professor Joachim A. Nitsche on the 
occasion of his sixtieth birthday 

Abstract. We consider a finite element approximation of the so-called Mindlin-Reissner 
formulation for moderately thick elastic plates. We show that stability and optimal error 
bounds hold independently of the value of the thickness. 

1. Introduction. The so-called Mindlin-Reissner model for moderately thin plates 
is often used by engineers in connection with plate and shell problems. It is well 
known that many numerical schemes for this model are satisfactory only when the 
thickness parameter t is "not too small". For a very small t, some bad behavior 
(such as the "locking" phenomenon) might occur. Here we present a method which 
is uniformly good as t goes to zero, and we prove optimal error estimates for 
transversal displacement, rotations and shear stresses, with constants independent 
of t. 

An outline of the paper is as follows. In Section 2 we recall the Mindlin-Reissner 
formulation and we construct a "model sequence" of problems { 91 }f>o, where t is 
the thickness of the plate. In Section 3 we describe our discretization procedure and 
we prove optimal error bounds. 

A different kind of discretization of this Mindlin-Reissner model is discussed in 
[4]. For the one-dimensional case, a deep analysis is done in [1]. For some recent 
survey on other techniques used in the engineering literature, see [5], [8]. 

2. The Mindlin-Reissner Model. Let Q be, for the sake of simplicity, a convex 
polygon in R2. The plate will occupy, in the undeformed configuration, the region 
Q2 X ]-t, t[ (t = thickness, > 0). If (0,0, f3) is the (vertical) load per unit volume 
acting on the plate, the Mindlin-Reissner model can be written as 

t3 ~~Xt 2 
(2.1) MinimizeI:= 2a(#,I3) + 2 |IVw - 110 - f3wdxdydz, 

where /3 and w are functions of (x, y) e Q and 

- - (/~E 3/, 312) aQ 1 + #/2 a 2 
a(1,q) := E 2 (( + ay a x ( x ay ay 

(2.2) 
12l- v2) \3// 

(1 __ __ + dx dy,9 2 (ay +ax )(ay +ax ) x 
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and where t, v, and E respectively denote thickness, Poisson's ratio and Young's 
module. One also has X = Ek/2(1 + v), with k = correction factor, to account for 
the vanishing of the stress field on the upper and lower face of the plate. See, for 
instance, [3] for more details. 

In order to study the behavior of the discretization of (2.1) for smaller and smaller 
t, we need a sequence of problems such that the corresponding solutions remain 
bounded. For this we assume in (2.1) that a sequence of loads f3(t) is given by 

(2.3) f3(t; X, Y, Z) = 2 g(x, A; 

hence for any t > 0 we consider the problem 

t3 ~~Xt 2 
(2.4) Minimize~l1:= H ia(_,#)+ 2 w- t3 gwdxdy. 

f3,w (1313 - 2 ~ ~ 3 
For the sake of simplicity, we shall consider the case of a clamped plate. This implies 
that the minimum in (2.4) has to be taken under the kinematic constraint /3 = w = 0 
on a U. More precisely, we set 

V= ((, () 6 E (Ho(g))2, E H1(g)I 

and we look for (/3, w) e V. 
The following proposition holds (cf. [9], [4]). 

PROPOSITION 2.1. For every t > 0, problem (2.4) has a unique solution 13(t), w(t). 
Moreover, we have, as t -O 0, 

(/9(t),w(t)) -- (p,w) in V, 

where 1= vwandEA2w = 12(1 - v2)g. 

Moreover, for numerical purposes, it is also convenient to have a bound on the 
quantities 

(2.5) y(t):= t2(Vw(t) - /9(t)), 

related to the shear stresses. For this we introduce the space 

tHo(rot; Q) := {7 E 1 ( L2(g))2 I rotq e i L2()Q) 71 ? =oag} 

17 H2(rot Q)= 11 llo U + 11 rot 71loQ 

(here rot - = (a3Q2/ax- q1/3ay) and T = unit counterclockwise tangent to au). 
We also introduce 

(2.6) rP= ( H0(rot; Q)) - 
/ { ej 

H=1(2), 
divq e 

||1 a 
I r?I: I UI2 + I1 div jI1, Q. 

Then we have (cf. [9], [4]), denoting K *) duality between H0(rot; Q) and r, 

PROPOSITION 2.2. The sequence (2.5) is bounded in r; moreover, as t -O 0, 

(2.7) y(t) -- y in r, 

with a(#, -q) + <-yqqR = 0 for all 7 e (Ho)2. 
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Our purpose is now to find a discretization procedure for (2.1) such that, on the 
model sequence (2.4), the corresponding error estimates hold uniformly in t > 0. 

To do that, we first give a different formulation of (2.4). The new formulation will 
be better suited for our discretization scheme. For this purpose, we give a different 
characterization of the space F defined in (2.6). 

PROPOSITION 2.3. Every element q E r can be written in a unique way as 

(2.8) ?q=V +rotp (rot p:= aaP aP 

with 4 Ee Ho(Q2) andp E L2( Q)/R. Moreover, 

(2.9) I+lI11r =1 111 i 11+ L2(2)/R 

Proof. Set X:= diva E H-1(9). Then 4 is the unique solution of AA = X in Q, 
' E Ho(9). Note that now div(,q - VA) = 0. Hence, q - VA = rotp, and p is 

determined in L2(Q2)/R (that is, up to a constant). Then we have (2.8). The proof of 
(2.9) is immediate. 

Remark 2.1. It must be noted that y e H0(rot; i) could be written as y = 

+ rotp with 4 e Ho' and p E H1(Q)/R. The difference between H0(rot; 2) and F 
can thus be understood as a matter of regularity of the p component. This also 
explains the convergence results that follow. 

Note now that problem (2.4) can be written as follows: 
Find /3(t), w(t), + (t), p(t) E (Ho)2 x Ho X Ho X H1/R such that 

(2.10) a(/3(t), 71) - X(V(t) + rot p(t), 71) = 0 vQ E (Ho), 

(2.11) X(v4(t),v4) = (gq) tV E Ho' 
(2.12) (Vw(t) - I3(t), ) = t2(v4(t),) VXE 

(2.13) (-/3(t), rot q) = t2( rot p(t), rot q) Vq E H1/R. 

Note that Eqs. (2.12), (2.13) are equivalent to 

(2.14) VW(t) - /3(t) = t2(v4'(t) + rot p(t)), 

so that, using (2.14), Eqs. (2.10), (2.11) imply 

(2.15) a(fi(t),71) + Xt-2(Vw(t) -/(t),Vt - 71)= (g, ) VE Ho, Vq E (Ho)2. 

Now the equivalence between (2.4) and (2.10)-(2.13) is clear, since (2.15) is just the 
variational formulation of (2.4). It follows from Proposition 2.2 that, in particular, 

A(t) will be bounded in Ho and p(t) will be bounded in L2( 9)/R as t -+ 0. 
We point out that Eqs. (2.10), (2.13) have a "more natural" ordering. More 

precisely, for g given, say, in L2(g), one can start by solving (2.11) first. Then 
joining together (2.10) and (2.13) we have 

(2.16) a(f3(t),q) - (rot p(t),q) = X(V(t),q) Vq Eq (Ho)2E 

-(13(t), rot q) = t2( rot p(t), rot q) Vq E H1/R. 
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We remark that, by setting 

(2.17) 

problem (2.16) can be written as 

(a(I3'(t) n) +(p(t),divq) = X(vp(t),,q) Vq (Ho) 2 

(divp (t),q) = t2(yp(t),Vq) Vq E H1/R, 

which is very closely related to a Stokes problem with a "penalty term" t2j p jo/2. 
It is clear that (2.18) (and hence (2.16)) can be uniquely solved. Finally, one can deal 
with Eq. (2.12), which is again a standard problem in the unknown w(t). 

We can therefore summarize this by saying that the system (2.10)-(2.13) is 
equivalent to two elliptic problems (in the variables A(t) and w(t)) and one 
Stokes-like problem (in the variables ,8(t) and p(t)). We further point out the 
following a priori bound. 

PROPOSITION 2.4. If ,8(t), w(t), A(t), p(t) is the solution of (2.10)-(2.13), we have 

(2.19) ILP(t)112 +IIW(t)112 +II4(t)112 +IP(t)j1 + tlP(t)12 < Cjjgjj0, 

with c independent of t. 

Proof. The bound 

(2.20) II4+(t) 112 < CIIgI o 

is trivial from (2.11). Consider now the variables /8(t) and p(t), and introduce the 
auxiliary problem 

{ a(p(t), 1) -( rot p(t), X) = (Vi(t), 7) vq E ( Ho), 

((t), rot q) = 0 Vq E L2/R, 

where 8B(t) and 6(t) are sought in (Ho)2 X L2/R. It is easy to check that (cf. 
Ladyzhenskaya [10] or Temam [12]) 

(2.21) 11 (t) 112 + 11~l < C1 +(t) 11 < C11 9 110 

Set nowI8*(t):= /3(t) - /3(t) and p*(t):= p(t) -p(t). We have 

f a(,*,) - X(rot p*,q) =0 V GE (Ho)2, 

(2.22 - (* rot q) = t2( rot p*, rot q) + t2( rot p(t) rot q) Vq E H1/R. 

Choose now q = /3* and q = p* in (2.22); then 

a(I*,A*) + Xt2j p*j1 = -AXt2( rot p(t), rot p*) < ct2j p*j1jjglo0, 

where we used (2.21). This implies jp*11 < cljgjo which, from (2.21) again, gives 

(2.23) p(t) I < c11g lo. 
From (2.20), (2.23) and (2.10) one has now easily 

(2.24) 1/3(t) 112 < CI gI1o. 
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The other inequalities in (2.19) follow from (2.12) and (2.13), using (2.20), (2.23), 
(2.24). 

Remark 2.2. The result (2.19) does not improve when g is more regular or the 
domain 2 is smoother. For instance, one does not have, in general, lIP(t)112 
bounded uniformly in t, even for smooth g and U. The reason for this lies in the fact 
that the normal derivative of p(t) vanishes at a Q. Since this is not true for 
p (0) = lim, _ 0 p (t), we have a boundary layer effect. 

3. Discretization and Error Bounds. Let, as usual, { Wh } h be a sequence of 
decompositions of i2 into triangles. For each Wh we set 

Y1 := ( E CO(O2), (IT E= l VT E- h}, 

S?I :=Yl n) H102(Q), 

B3: (A | E= COO)),(PIT E g03 and 01aT = ? VT G Wh} 

Note that Y' and S are usual spaces of piecewise linear functions, while B3 
consists of cubic bubble functions. We define now 

Hh:= ( e B3); Wh:= j1; rh := ( v.1 ) e ( rot Y ). 

According to the formulation (2.10)-(2.13), we can now write the discretized 
problem as follows: 

Find Ah(t), Wh(t), Ph(t) Ph(t) E Hh X Wh x - >x Y such that 

(3.1) Y(V4'(t),17}) 
= (g, ) V 19 

(3.2) a(/h(t),q1) - rot Ph(t)(I1) = X( h(t),1) Vq Hh, 

(3.3) -P(/h(t), rot q) = t2( rot Ph(t), rot q) Vq e 1 

(3.4) (VWh(9), X) = (Ph tW + t2 Vh(t),0 X) VX E Whh 

It is clear that (3.1) has a unique solution. Moreover, we have by standard 
arguments (cf. [11], [7]) 

(3.5) 4h(t) - +(tll, < ch jig 1o. 

Let us consider now problem (3.2), (3.3). Keeping the analogy with the Stokes 
problem (see (2.18)), we see that the choice of the spaces Hh and Yl corresponds to 
the use of the MINI element of [2]. In particular, we easily obtain from [2] that 

(3.6) Inf Sup (- - ) > c > 0, 
qE=-Y H |n |1ll 'q-~ j q |Ijq L2(Q)/R 

with c independent of h. We now want to estimate the difference between (/3(t), p(t)) 
and (lh(Ot), Ph(t)). We have first 

112-h l + Xt2 11 rot (P - Ph) 112 

2 

P2-Ih\II0 

(< a (f -fPh1 -Ph) + Xt2 (rot (p -Ph), rot (p Ph)) 

= [a( -rhef -') + Xt2(rot (P - Ph), rot (p - q))] 

+ [a(P3 Ph-A 1 - Ah) + At ( rot (p - Ph), rot (q - Ph))] I + II 
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for all q E Hh and q E Y?1'. Then, 

a(3 -flh,'q - Ah) = X{(rot(p -ph),'q - Ah) +(v( - lh),rLh)}, 

Xt2 ( rot (p -Ph), rot (q- ph)) = A(ph -, , rot (q -Ph))' 

so that 

(3.8) II1= x{(V(ip - A)Lh) +(rot(p "Ph)V1 1) 

+ (ph 
- 3, rot (q ph))). 

Choosing for q and q the best approximations of fl(t) and p(t) in Hh and Y1, 
respectively, we get from (3.7), (3.8) and (3.5) 

-i2 + Xt2j p P12 
(3.9) li A-Ah Ill - t|P h ll 

< C(39||l-PhtIll + 'XtIp - Phil +jjq PhlIL2(0)/R + h} jjgIo, 

where we also made use of (2.19). 
On the other hand, from (3.6) we have 

1I Ph -q qjL2(0)/R < SUP (', rot(Ph - q)) 
C H 

(3.10) -Sup ('q, rot (Ph - P)) + 

C 
p SU a 1 

(Ph i) + (V(h 1 09VI ) , 11, 11 + hjp i 

< const( i|p -.h Il1 + hI 1g 1?), 

which, inserted into (3.9), gives 

(3.11) lILB-gh|l + -t2Ip-Phi 
_ Ch{ll -hll + XtIp -Phil + h} ljgjjo 

This implies 

(3.12) lip phIll + tip Ph11 < chIljjgo. 

In turn, (3.12), together with (3.10), yields 

(3.13) II P - Ph iiL2(0)/R < ch jg 11o. 

Finally, from (2.12), (3.4), (3.5) and (3.12) we obtain 

1w - whIll < chljgljo. 

We conclude with the following theorem. 

THEOREM 3.1. Let 13(t), w(t), +(t), p(t) and Ph(t), Wh(t), h(t), ph(t) be the 
solutions of (2.10)-(2.13) and (3.1)-(3.4), respectively. Then we have 

(3.14) |lp(t) -hMt) j1j + J|W(t) - Wh(t) Ill + jIp(t) - h(t) Ill 

+tlP(t) -Ph(t) 11 + jjP(t) Ph(t) l1L2/R C chjIgjjO 
with c independent of h and t. 
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Remark 3.1. The use of higher-order schemes in order to improve the power of h 
in (3.14) is not clearly advantageous, because of the boundary-layer effect (see 
Remark 2.1) and the fact that 1113(t)113 may become unbounded when t -O 0. 

Remark 3.2. It is also possible to transform Eq. (2.18) by the introduction of a 
mixed method for the treatment of the term t2Ap(t). More precisely, one could 
solve the problem: 

Find (/f, p, a) E (Hd(S2))2 x L2(Q2) x HO(rot; 2) such that 

(3.15) a(/q) + ( p, rot q) = X(V, 1), Ho()) 

(3.16) (rot3, q) = t(rot a, q), Vq E L2(Q), 

(3.17) t( p, rot 8) = (a, 8), VS e Ho(rot; 0)* 

Equations (3.16)-(3.17) are a well-known weak form of the Neumann problem 

(t2zAp = rot#, 
(3.18) al = 0, 

an 

for which successful discretizations have been developed (cf. [6]). This weaker 
formulation can be expected to behave better with respect to boundary-layer effects. 
Moreover, the limit problem for t = 0 becomes a standard "Stokes" problem, for 
which very good approximations are known, using discontinuous fields for the 
discrete pressure. Formulation (3.15)-(3.17) also suggests that, once p is computed 
(for t = 0), an approximation a of rotp (which is the physically interesting variable) 
can be obtained a posteriori by solving 

(3.19) (a, 8) = (p, rot 8); VS e H(rot; Q); a e H(rot; 2). 
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